Home
Class 10
MATHS
If A, B and C are interior angled ...

If A, B and C are interior angled of a triangle ABC, then show that ` sin ((B + C ) /( 2 )) = cos "" ( A ) /(2) `

Promotional Banner

Topper's Solved these Questions

  • AN INTRODUCTION TO TRIGONOMETRY

    ZEN PUBLICATION|Exercise Exercise 11.4|18 Videos
  • AN INTRODUCTION TO TRIGONOMETRY

    ZEN PUBLICATION|Exercise ZEN ADDITIONAL QUESTIONS (MULTIPLE - CHOICE QUESTIONS)|13 Videos
  • AN INTRODUCTION TO TRIGONOMETRY

    ZEN PUBLICATION|Exercise Exercise 11.2|15 Videos
  • AREA RELATED TO CIRCLES

    ZEN PUBLICATION|Exercise ADDITIONAL QUESTIONS (HIGHER ORDER THINKING SKILLS)|7 Videos

Similar Questions

Explore conceptually related problems

If A , B and C are interior angles of a triangle ABC, then show that tan ((A+B) /(2)) =cot C/(2)

If A,B and C are interior angles of a DeltaABC ,then tan (A+B)/(2) is equal to :

In a triangle ABC, a[b cos C - c cos B] =

In a triangle ABC, a[b cos C - c cos B]=

The triangle A B C is right angled at C, then tan A+tan B=

If A B C are the angles of a triangle then sin ^(2) A+sin ^(2) B+sin ^(2) C-2 cos A cos B cos C

In a triangle ABC , angle B=60^(@) , then

If any triangle A B C sin ^(2) A+sin ^(2) B-sin ^(2) C=

In a triangle ABC if a = 2, B = 60^(@) and C = 75^(@) , then b =