Home
Class 10
MATHS
The value of (cos^(4)x+cos^(2)x sin^(2) ...

The value of `(cos^(4)x+cos^(2)x sin^(2) x + sin^(2)x)/(cos^(2)x+ sin^(2) x cos^(2) x + sin^(4)x)` is ____________

A

2

B

1

C

3

D

0

Text Solution

Verified by Experts

The correct Answer is:
B
Promotional Banner

Topper's Solved these Questions

  • AN INTRODUCTION TO TRIGONOMETRY

    ZEN PUBLICATION|Exercise ZEN ADDITIONAL QUESTIONS ( HOTS (HIGHER ORDER THINKING SKILLS) - QUESTIONS)|5 Videos
  • AREA RELATED TO CIRCLES

    ZEN PUBLICATION|Exercise ADDITIONAL QUESTIONS (HIGHER ORDER THINKING SKILLS)|7 Videos

Similar Questions

Explore conceptually related problems

cos 4x =1- 8 sin ^(2) x cos ^(2) x

Find : int(sin^(2)x-cos^(2)x)/(sin^(2)xcos^(2)x)dx :

cos4x=1-8sin^(2)x cos^(2) x

cos ^(2) 2x -cos ^(2) 6x = sin 4x sin 8x

int (sin^(8)x-cos^(8)x)/(1-2sin^(2)x cos^(2)x)dx =

The maximum of 4sin^(2)x+3cos^(2)x is

int (sin^(3)x+cos^(3)x)/(sin^(2)x. Cos^(2)x )dx =

int dx/(sqrt(cos^(4)x-cos^(2)x sin^(2)x) ) =

int(sin2x)/(2cos^(2)x+3sin^(2)x)dx equals