Home
Class 12
MATHS
If f(x)=cos{(pi)/(2)[x]-x^(3)},1 lt x lt...

If `f(x)=cos{(pi)/(2)[x]-x^(3)},1 lt x lt 2and[x]=` the greatest integer `lex`, then find `f'(root(3)((pi)/(2)))`

Promotional Banner

Similar Questions

Explore conceptually related problems

If f(x)=cos{pi/2[x]-x^3}, 1

If f(x)=cos{(pi)/(2)[x]-x^(3)},1ltxlt2 , and [x] denotes the greatest integer less than or equal to x, then the value of f'(root(3)((pi)/(2))) , is

If f(x)=cos{(pi)/(2)[x]-x^(3)},1ltxlt2 , and [x] denotes the greatest integer less than or equal to x, then the value of f'(root(3)((pi)/(2))) , is

If f(x)=cos[pi^(2)]x+cos[-pi^(2)]x , where [x] stands for the greatest integer function, then

If f(x)=cos([pi^2|x)+cos([-pi^2|x) , where [x] stands for the greatest integer function, then

If f(x)=cos[pi^2]x +cos[-pi^2]x , where [x] stands for the greatest integer function, then

If f(x)=cos[pi^2]x +cos[-pi^2]x , where [x] stands for the greatest integer function, then