Home
Class 12
MATHS
The value of the definate integral inte^...

The value of the definate integral `int_e^(e^(sin10))1/x(1+(1-lnx)/(lnxln(x/(lnx)))) dx`, equals

Promotional Banner

Similar Questions

Explore conceptually related problems

The value of the definate integral int_(e)^(e^(sint10))(1)/(x)(1+(1-ln x)/(ln x ln((x)/(ln x))))dx, equals

The value of the definite integral int_(1)^(e)((x+1)e^(x).ln x)dx is

The value of the defined integral int_(0)^((pi)/(2))(sin x+cos x)*sqrt((e^(x))/(sin x))dx equals

The value of the integral int_(-a)^(a)(e^(x))/(1+e^(x))dx is

The value of the integral int_(-a)^(a)(e^(x))/(1+e^(x))dx is

The value of the definite integral,int_(1)^(oo)(e^(x+1)+e^(3-x))^(-1)dx is

The value of the integral int_(1)^(2)e^(x)(log_(e)x+(x+1)/(x))dx is

The value of the integral int_(1)^(2)e^(x)(log_(e)x+(x+1)/(x))dx is-

The value of the integral int_ _(1+2sinx)e^(x)dx is equal to-

Find the value of integral A=int_(-a)^(a)(e^(x))/(1+ e^x)dx