Home
Class 12
MATHS
Prove that lim(x rarr 2) log(2x-3)/(2(x-...

Prove that `lim_(x rarr 2) log(2x-3)/(2(x-2))=1`

Promotional Banner

Similar Questions

Explore conceptually related problems

lim_(x rarr2)(log(2x-3))/(2(x-2))

Prove that: lim_(x rarr -2) log(x+3)/(x+2)=1

Prove that lim_(x rarr 0) (log(1+x^3))/(sin^3 x)=1 .

Prove that lim_(x rarr 1) (4^(x)-4)/(x-1)=8log2

Prove that: lim_(x rarr 0) (log(1+x)+sinx)/(e^(x)-1)=2

lim_(x rarr0)(log(1-(x)/(2)))/(x)

prove that lim_(x rarr 0) (1+2x)^(1/x)=e^(2)

Lim_(x rarr0)(log(1+x)-x)/(x^(2))

Prove that, lim_(x rarr 0) ((1+x)^((1)/(2))-1)/((1+x)^((1)/(3))-1)=(3)/(2)

prove that lim_(x rarr1)(x^(3)-1)/(x^(2)-1)=(3)/(2)