Home
Class 12
MATHS
prove that lim(x rarr 0) (1+2x)^(1/x)=e^...

prove that `lim_(x rarr 0) (1+2x)^(1/x)=e^(2)`

Promotional Banner

Similar Questions

Explore conceptually related problems

lim_(x rarr0)(1+2x)^((1)/(x)) = e^(2)

lim_(x rarr0)(1+2x)^(5/x)

lim_(x rarr0)(1+x)^((1)/(x))=e

lim_(x rarr0)(2^(2x)-1)/(x)

Prove that lim_(x rarr0)(e^(7x)-1)/(x)=7

Prove that, lim_(x rarr 0) ((1+x)^((1)/(2))-1)/((1+x)^((1)/(3))-1)=(3)/(2)

If we assume u = tan^-1 2x , prove that lim_(x rarr 0) x/(tan^-1 2x) = 1/2 lim_(u rarr 0) (tan u)/u

Prove that : lim_(x rarr 0^+)(x)/(|x|)=1 .

Prove that lim_(x rarr0)((1+x)^(1/2)-1)/((1+x)^(1/3)-1)=(3)/(2)

lim_(x rarr 0) (e^(x)-(1+x))/x^(2) =