Home
Class 12
MATHS
एक आव्यूह A=[(a,b,c),(b,c,a),(c,a,b)] इस...

एक आव्यूह `A=[(a,b,c),(b,c,a),(c,a,b)]` इस प्रकार है की `abc=1` तथा `A'A=I`, जहाँ a ,b , c धनात्मक वास्तविक संख्याएं हैं, तब सिद्ध कीजिए की `a^(3)+b^(3)+c^(3)=4`

Promotional Banner

Similar Questions

Explore conceptually related problems

If A=[(a,b,c),(b,c,a),(c,a,b)],abc=1,A^(T)A=I, then find the value of a^(3)+b^(3)+c^(3).

If A=[(a,b,c),(b,c,a),(c,a,b)],abc=1,A^(T)A=I, then find the value of a^(3)+b^(3)+c^(3).

|{:(a,b,c),(a-b,b-c,c-a),(b+c,c+a,a+b):}|=a^3+b^3+c^3-3abc

Prove that |(a+b, b, c), (b+c, c, a), (c+a, a, b)| = 3abc - a^3-b^3-c^3.

Show that abs((a,b,c),(a-b,b-c,c-a),(b+c,c+a,a+b)) = a^3+b^3+c^3 -3abc.

Prove that : |{:(1,b,c),(b,c,a),(c,a,b):}|=3 a b c-a^(3)-b^(3)-c^(3)

Let [(3a,b,c),(b,3c,a),(c,a,3b)] be a 3xx3 matrix where a,b,c in R . If abc =1 AA' = 4 I_(3) and det (A) gt 0 then (a^(3)+b^(3)+c^(3)) is :

Prove that |(a,b,c),(a-b,b-c,c-a),(b+c,c+a,a+b)| = a^(3) + b^(3) + c^(3) - 3abc .

If abc!=0 and if |(a,b,c),(b,c,a),(c,a,b)|=0 then (a^(3)+b^(3)+c^(3))/(abc)=

Prove that : |{:(a+b,b,c),(b+c,c,a),(c+a,a,b):}|=3 abc-a^(3)-b^(3)-c^(3)