Home
Class 12
MATHS
Property 4: If f(x) is a continuous func...

Property 4: If `f(x)` is a continuous function on `[a,b]` then `int_a ^b f(x) dx = int_a ^b f(a+b-x) dx`

Promotional Banner

Similar Questions

Explore conceptually related problems

Property 4: If f(x) is a comtinuous function on [a;b] then int_(a)^(b)f(x)dx=int_(a)^(b)f(a+b-x)dx

Property 8: If f(x) is a continuous function defined on [-a; a] then int_(-a) ^a f(x) dx = int_0 ^a {f(x) + f(-x)} dx

Property 5: If f(x) is a continuous function defined on [0;a] then int_(0)^(a)f(x)dx=int_(0)f(a-x)dx

Property 8: If f(x) is a continuous function defined on [-a;a] then int_(-a)^(a)f(x)dx=int_(0)^(a){f(x)+f(-x)}dx

Prove that \int_{a}^b f(x) dx = \int_{a}^b f(a+b-x) dx

Prove that int_(a)^(b) f(x) dx= int_(a)^(b) f(a+b-x) dx

Prove that int_(a)^(b)f(x)dx=int_(a)^(b)f(a+b-x)dx.

Prove that \int_{a}^b f(x) dx = - \int_{b}^a f(x) dx

Prove that the equality int_(a)^(b) f(x) dx = int_(a)^(b) f(a + b - x) dx