Home
Class 12
MATHS
यदि veca=vecb+vecc, तब veca.(vecbxxvecc)...

यदि `veca=vecb+vecc`, तब `veca.(vecbxxvecc)` बराबर है -

Promotional Banner

Similar Questions

Explore conceptually related problems

For the non-zero vectors veca, vecb and vecc, veca.(vecbxxvecc) = 0 if

If [veca vecb vecc]=1 then value of (veca.vecbxxvecc)/(veccxxveca.vecb)+(vecb.veccxxveca)/(vecaxxvecb.vecc)+(vecc.vecaxxvecb)/(vecbxxvecc.veca) is

If [veca vecb vecc]=1 then value of (veca.vecbxxvecc)/(veccxxveca.vecb)+(vecb.veccxxveca)/(vecaxxvecb.vecc)+(vecc.vecaxxvecb)/(vecbxxvecc.veca) is

Consider three vectors veca, vecb and vecc . Vectors veca and vecb are unit vectors having an angle theta between them For vector veca,|veca|^2=veca.veca If veca_|_vecb and veca_|_vecc then veca||vecbxxvecc If veca||vecb, then veca=tvecb Now answer the following question: If vecc is as unit vector such that veca.vecb=veca.vecc=0 and theta= (pi/6) then veca= (A) +-1/2(vecbxxvecc) (B) +-(vecbxxvecc) (C) +-2(vecbxxvecc) (D) none of these

If (vecaxxvecb)xxvecc=vecaxx(vecbxxvecc), Where veca, vecb and vecc and any three vectors such that veca.vecb=0,vecb.vecc=0, then veca and vecc are

If (vecaxxvecb)xxvecc=vecaxx(vecbxxvecc) where veca, vecb and vecc are any three vectors such that veca.vecb!=0, vecb. vecc!=0 then veca and vecc are

If (vecaxxvecb)xxvecc=vecaxx(vecbxxvecc), Where veca, vecb and vecc and any three vectors such that veca.vecb=0,vecb.vecc=0, then veca and vecc are

If veca=vecb+vecc, then write the value of veca*(vecbxxvecc).

If vecc=vecaxxvecb and vecb=veccxxveca then (A) veca.vecb=vecc^2 (B) vecc.veca.=vecb^2 (C) veca_|_vecb (D) veca||vecbxxvecc

If vecc=vecaxxvecb and vecb=veccxxveca then (A) veca.vecb=vecc^2 (B) vecc.veca.=vecb^2 (C) veca_|_vecb (D) veca||vecbxxvecc