Home
Class 12
MATHS
[" If "f(x)^(2)+((1-x)/(1+x))=x^(3),x!=-...

[" If "f(x)^(2)+((1-x)/(1+x))=x^(3),x!=-1,1" and "f(x)!=0," then "{f(-2)}" (the fractional "],[" part of "f(-2)" ) is equal to "]

Promotional Banner

Similar Questions

Explore conceptually related problems

Let f(x) = {x} , the fractional part of x then int_(-1)^(1) f(x) dx is equal to

If f'(x)=(1)/((1+x^(2))^(3//2)) and f(0)=0, then f(1) is equal to :

If f'(x)=(1)/((1+x^(2))^(3//2)) and f(0)=0, then f(1) is equal to :

If f'(x)=(dx)/((1+x^(2))^(3//2)) and f(0)=0. then f(1) is equal to

If f'(x)=(dx)/((1+x^(2))^(3//2)) and f(0)=0. then f(1) is equal to

If f(x) = e^(x) , then lim_(xto0) (f(x))^((1)/({f(x)})) (where { } denotes the fractional part of x) is equal to -

If f(x)=x^(2)+3x-5, find f(0),f(1) and f((1)/(2))

If f(x)=f'(x) and f(1) =2 , then f(3) equals :

Let f(x+(1)/(x))=x^(2)+(1)/(x^(2)),(x ne 0) then f(x) equals