Home
Class 12
MATHS
The value of lim(xrarr0)(ln(1+2x+4x^(2))...

The value of `lim_(xrarr0)(ln(1+2x+4x^(2))+ln(1-2x+4x^(2)))/(secx-cosx)` is equal to

Promotional Banner

Similar Questions

Explore conceptually related problems

The value of lim_(xrarr0)(1-cos4x)/x^2 is

The value of lim_(xrarr0)(1-cos4x)/x^2 is

lim_(xto0) (log(1+x+x^(2))+log(1-x+x^(2)))/(secx-cosx)=

lim_(xto0) (log(1+x+x^(2))+log(1-x+x^(2)))/(secx-cosx)=

value of lim_(xrarr0)(cosx-1)/x^2 is

lim_( xrarr0) (1-cosx)/(x^(2))

lim_( xrarr0) (1-cosx)/(x^(2))

The value of lim_(xrarr0)(log(1+2x))/(5x)+lim_(xrarr2)(x^(4)-2^(4))/(x-2) is equal to

The value of lim_(xrarr0)(log(1+2x))/(5x)+lim_(xrarr2)(x^(4)-2^(4))/(x-2) is equal to

The value of lim_(xrarr0)((1+6x)^((1)/(3))-(1+4x)^((1)/(2)))/(x^(2)) is equal to