Home
Class 11
MATHS
Show that ((2n)!)/(n!) = 2^(n) { 1,3,5...

Show that ` ((2n)!)/(n!) = 2^(n) { 1,3,5 ,…( 2n -1) }`

Promotional Banner

Similar Questions

Explore conceptually related problems

Prove that ((2n+1)!)/(n!)=2^(n){1.3.5(2n-1)(2n+1)}

Prove that ((2n)!) / (n!) = 2^n(2n - 1) (2n - 3) ... 5.3.1.

Show that , (2n)! =2^(n).n![1.3.5…(2n-1)].

Prove that ((2n+1)!)/(n!)=2^(n)[1.3.5.....(2n-1)*(2n+1)]

Prove that ((2n+1)!)/(n !)=2^n{1. 3. 5 .........(2n-1)(2n+1)}

Show that : (^(4n)C_(2n))/(^(2n)C_n) = (1.3.5...(4n-1))/{1.3.5...(2n-1)}^2

Prove that : (2n) ! = 2^n (n!)[1.3.5.... (2n-1)] for all natural numbers n.