Home
Class 12
MATHS
Give a condition that three vectors ...

Give a condition that three vectors ` vec a , vec b` and ` vec c` from the three sides of a triangle. What are the other possibilities?

Promotional Banner

Similar Questions

Explore conceptually related problems

For any three vectors vec a,vec b and vec c , show that vec a- vec b,vec b- vec c and vec c- vec a are coplanar.

For any three vectors vec a;vec b;vec c find [vec a+vec b;vec b+vec c;vec c+vec a]

For any three vectors veca, vec b, vec c prove that (vec a + vec b)+ vec c = vec a + (vec b + vec c)

Let vec a, vec b and vec c be three vectors. Then scalar triple product [vec a, vec b, vec c]=

For any three vectors vec a, vec b, vec c, (vec a-vec b) * (vec b-vec c) xx (vec c-vec a) is equal to

For any three vectors vec a, vec b, vec c the expression (vec a - vec b) . [(vec b - vec c ) xx (vec c - vec a)] =

If vec(A), vec(B) and vec(C ) are three vectors, then the wrong relation is :

If vec(A), vec(B) and vec(C ) are three vectors, then the wrong relation is :

It the vectors vec(a), vec(b) and vec(c) form the sides vec(BC), vec(CA) and vec(AB) respectively of a triangle ABC, then write the value of vec(a) xx vec(c) + vec(b) xx vec(c) .