Home
Class 9
MATHS
If 3^(logx) +x^(log^(3) = 54 find log x...

If `3^(logx) +x^(log^(3) = 54` find log x.

Promotional Banner

Similar Questions

Explore conceptually related problems

If 3(log 5 - log 3) - (log 5 - 2 log 6) = 2 - log x, find x.

If f(x)=log(logx) , then find f.(e ).

Find x, if log x^(3) - log 3x =2 log 2 + log 3 ,

Evaluate : int (e^(6log x)- e^(4logx))/(e^(3logx)- e^(log x))dx

"F i n d"int[log(logx)+1/((logx)^2)]dx Find log (log x)+ |dx 2 (log x)

Solve for x: a) (log_(10)(x-3))/(log_(10)(x^(2)-21)) = 1/2 b) log(log x)+log(logx^(3)-2)= 0, where base of log is 10. c) log_(x)2. log_(2x)2 = log_(4x)2 d) 5^(logx)+5x^(log5)=3(a gt 0), where base of log is 3. e) If 9^(1+logx)-3^(1+logx)-210=0 , where base of log is 3.

Solve for x :5^(logx)+5x^(log5)=3(a >0); where base of log\ is a

Solve (log_(3)x)(log_(5)9)- log_x 25 + log_(3) 2 = log_(3) 54 .