Home
Class 12
MATHS
Let f(x)=x^(2)-2xandg(x)=f(f(x)-1)+f(5-f...

Let `f(x)=x^(2)-2xandg(x)=f(f(x)-1)+f(5-f(x)),` then

Promotional Banner

Similar Questions

Explore conceptually related problems

Let f(x)=x^(2)-2x and g(x)=f(f(x)-1)+f(5-f(x)), then

Let f(x)=x^(2)-2x and g(x)=f(f(x)-1)+f(5-f(x)), then

Let f(x)=x^2-2x ,x in R ,a n dg(x)=f(f(x)-1)+f(5-f(x))dot Show that g(x)geq0AAx in Rdot

Let f(x)=x^2-2x ,x in R ,a n dg(x)=f(f(x)-1)+f(5-f(x))dot Show that g(x)geq0AAx in Rdot

Let f(x)=x^2-2x ,x in R ,a n dg(x)=f(f(x)-1)+f(5-f(x))dot Show that g(x)geq0AAx in Rdot

Let f (x) = |x-2| and g (x) = f (f (x)). Then derivative of g at the point x =5 is

Let f(x) =x^(2) -1 Find f^(@) f (ii) f^(@) f^(@) f

Let f(x)=tan xandg(f(x))=f(x-(pi)/(4)) where f(x)andg(x) are real valued functions. Prove that f(g(x))=tan((x+1)/(x+1))

Let f_(1) (x) and f_(2) (x) be twice differentiable functions where F(x)= f_(1) (x) + f_(2) (x) and G(x) = f_(1)(x) - f_(2)(x), AA x in R, f_(1) (0) = 2 and f_(2)(0)=1. "If" f'_(1)(x) = f_(2) (x) and f'_(2) (x) = f_(1) (x) , AA x in R then the number of solutions of the equation (F(x))^(2) =(9x^(4))/(G(x)) is...... .

Let f_(1) (x) and f_(2) (x) be twice differentiable functions where F(x)= f_(1) (x) + f_(2) (x) and G(x) = f_(1)(x) - f_(2)(x), AA x in R, f_(1) (0) = 2 and f_(2) (0) = 1. "If" f'_(1)(x) = f_(2) (x) and f'_(2) (x) = f_(1) (x) , AA x in R . then the number of solutions of the equation (F(x))^(2) =(9x^(4))/(G(x)) is...... .