Home
Class 12
MATHS
Prove that .^(2n)P(n)={1.3.5.....(2n-1)...

Prove that `.^(2n)P_(n)={1.3.5.....(2n-1)}.2n`

Promotional Banner

Similar Questions

Explore conceptually related problems

Prove that (2n!)/(n!)={1.3.5.....(2n-1)}2^n

Prove that , .^(2n)C_(n)=2^(n)(1.3.5...(2n-1))/(lfloorn)

Prove that: :((2n)!)/(n!)={1.3.5...(2n-1)}2^(n)

Prove that ((2n+1)!)/(n!)=2^(n)[1.3.5.....(2n-1)*(2n+1)]

Prove that : (2n) ! = 2^n (n!)[1.3.5.... (2n-1)] for all natural numbers n.

Prove that .^(2n)C_(n)=(2^(n)xx[1*3*5...(2n-1)])/(n !) .

Prove that ((2n+1)!)/(n!)=2^(n){1.3.5(2n-1)(2n+1)}

Prove that: :2^(n)C_(n)=(2^(n)[1.3.5(2n-1)])/(n!)

Prove that: \ ^(2n)C_n=(2^n[1. 3. 5 (2n-1)])/(n !)