Home
Class 12
MATHS
The value of lim (xto oo) ((n !)/(n ^(n)...

The value of `lim _(xto oo) ((n !)/(n ^(n)))^((3n^(3)+4)/(4n ^(4)-1)), n inN` is equal to:

Promotional Banner

Similar Questions

Explore conceptually related problems

The value of lim_(n to oo)((n!)/(n^(n)))^((2n^(4)+1)/(5n^(5)+1)) is equal

The value of lim_(n to oo)((n!)/(n^(n)))^((2n^(4)+1)/(5n^(5)+1)) is equal

The value of lim_(n to oo) [(n!)/(n^(n))]^((1)/(n)) is equal to -

The value of lim_(xto oo)(1^(3)+2^(3)+3^(3)+……..+n^(3))/((n^(2)+1)^(2))

The value of sum_(n=1)^(oo)(4n-2)/(3^(n))

Lim_(nto oo)(3^(n)+4^(n))^((1)/(n))=

lim_(xto oo) (1)/(n) {1+e^(1//n)+e^(2//n)+e^(3//n)+.....+e^((n-1)/(n))} is equal to

The value of lim_(n rarr oo)(1/(1-n^4)+8/(1-n^4)+...+n^3/(1-n^4)) is

The value of lim_(n to oo) (2n^(2) - 3n + 1)/(5n^(2) + 4n + 2) equals