Home
Class 12
MATHS
The position vectors of the points A, B,...

The position vectors of the points A, B, C and D are `hat(i)+hat(j)+hat(k), 2hat(i)+3hat(j), 3hat(i)+5hat(j)-2hat(k) " and " -hat(j)+hat(k)` respectively. Show that `vec(AB) " and " vec(CD)` are parallel and find the ratio of their moduli.

Promotional Banner

Similar Questions

Explore conceptually related problems

The position vectors of the point A,B,C and D are 4hat(i)+3hat(j)-hat(k),5hat(i)+2hat(j)+2hat(k),2hat(i)-2hat(j)-3hat(k) and 4hat(i)-4hat(j)+3hat(k) , respectively. Show that vec(AB) and vec(CD) are parallel.

If position vectors of four points A, B, C, D are hat(i)+hat(j)+hat(k), 2hat(i)+3hat(j), 3hat(i)+5hat(j)-2hat(k), -hat(j)+hat(k) respectively, then overline(AB) and overline(CD) are related as

Let vec(a)=4hat(i)+3hat(j)-hat(k), vec(b)=5hat(i)+2hat(j)+2hat(k), vec(c)=2hat(i)-2hat(j)-3hat(k) " and "vec(d)=4hat(i)-4hat(j)+3hat(k), " prove that " vec(b)-vec(a) " and " vec(d)-vec(c) are parallel and find the ratio of their moduli.

Vector vec(A)=hat(i)+hat(j)-2hat(k) and vec(B)=3hat(i)+3hat(j)-6hat(k) are :

Vector vec(A)=hat(i)+hat(j)-2hat(k) and vec(B)=3hat(i)+3hat(j)-6hat(k) are :

If A,B,C and D are points whose position vectors are hat(i) + hat(j) + hat(k), 4hat(i) - hat(j) + 2hat(k), 5hat(i) + hat(j) , 7 hat(i) + 2hat(j) + 3hat(k) respectively, then the projection of AB on CD is

If vec(a)=2hat(i)+hat(j)+3hat(k),vec(b)=-hat(i)+2hat(j)+hat(k) , and vec(c)=-3hat(i)+hat(j)+2hat(k) , find [hat(a)hat(b)hat(c)] .

Show that the vectors vec(a) = hat(i) - 2hat(j) + 3hat(k), vec(b) = -2hat(i) + 3hat(j) - 4hat(k) and vec(c) = hat(i) - 3hat(j) + 5hat(k) are coplanar.

Show that the vectors : vec(a)=hat(i)-2hat(j)+3hat(k), vec(b)=-2hat(i)+3hat(j)-4hat(k) and vec(c )=hat(i)-3hat(j)+5hat(k) are coplanar.