Home
Class 12
MATHS
if (x1,y1),(x2,y2), (x3,y3) are vertices...

if `(x_1,y_1),(x_2,y_2), (x_3,y_3)` are vertices equilateral triangle such that `(x_1-2)^2 +(y_1-3)^2 =(x_2-2)²+(y_2-3)^2 =(x_3-2)^2 +(y_3-3)^2` then `x_1+x_2+x_3+2(y_1+y_2+y_3)`

Promotional Banner

Similar Questions

Explore conceptually related problems

If (x_(1),y_(1)),(x_(2),y_(2)),(x_(3),y_(3)) are vertices of equilateral triangle such that (x_(1)-2)^(2)+(y_(1)-3)^(2)=(x_(2)-2)^(2)+(y_(2)-3)^(2)=(x_(3)-2)^(2)+(y_(3)-3)^(2) then

If (x_i,y_i),i=1,2,3 are the vertices of an equilateral triangle such that (x_1+2)^2+(y_1-3)^2=(x_2+2)^2+(y_2-3)^2=(x_3+2)^2+(y_3-3)^2 , then find the value of (x_1+x_2+x_3)/(y_1+y_2+y_3)

If (x_i ,y_i),i=1,2,3, are the vertices of an equilateral triangle such that (x_1+2)^2+(y_1-3)^2=(x_2+2)^2+(y_2-3)^2=(x_3+2)^2+(y_3-3)^2, then find the value of (x_1+x_2+x_3)/(y_1+y_2+y_3) .

If (x_i,y_i),i=1,2,3 are the vertices of an equilateral triangle such that (x_1+2)^2+(y_1-3)^2=(x_2+2)^2+(y_2-3)^2=(x_3+2)^2+(y_3-3)^2 , then find the value of (x_1+x_2+x_3)/(y_1+y_2+y_3)

If (x_i ,y_i),i=1,2,3, are the vertices of an equilateral triangle such that (x_1+2)^2+(y_1-3)^2=(x_2+2)^2+(y_2-3)^2=(x_3+2)^2+(y_3-3)^2, then find the value of (x_1+x_2+x_3)/(y_1+y_2+y_3) .

If (x_i ,y_i),i=1,2,3, are the vertices of an equilateral triangle such that (x_1+2)^2+(y_1-3)^2=(x_2+2)^2+(y_2-3)^2=(x_3+2)^2+(y_3-3)^2, then find the value of (x_1+x_2+x_3)/(y_1+y_2+y_3) .

If (x_(1), y_(1)), (x_(2), y_(2)), (x_(3), y_(3)) are the vertices of an equilateral triangle such that (x_(1)-2)^(2)+(y_(1)-3)^(2)=(x_(2)-2)^(2)+(y_(2)-3)^(2)=(x_(3)-2)^(2)+(y_(3)-3)^(2) then x_(1)+x_(2)+x_(3)+2(y_(1)+y_(2)+y_(3))=

If (x_(i),y_(i)),i=1,2,3, are the vertices of an equilateral triangle such that (x_(1)+2)^(2)+(y_(1)-3)^(2)=(x_(2)+2)^(2)+(y_(2)-3)^(2)=(x_(3)+2)^(2)+(y_(3)-3)^(2) then find the value of (x_(1)+x_(2)+x_(3))/(y_(1)+y_(2)+y_(3))

If A(x_1,y_1),B(x_2,y_2),C(x_3,y_3) are the vertices of the triangle then find area of triangle

If (x_1,y_1) , (x_2,y_2) and (x_3,y_3) are the vertices of a triangle whose area is k square units, then |{:(x_1,y_1,4),(x_2,y_2,4),(x_3,y_3,4):}|^2 is