Home
Class 12
MATHS
If vec aa n d vec b are any two vectors...

If ` vec aa n d vec b` are any two vectors of magnitudes 2 and 3, respectively, such that `|2( vec axx vec b)|+|3( vec adot vec b)|=k ,` then the maximum value of `k` is `sqrt(13)` b. `2sqrt(13)` c. `6sqrt(13)` d. `10sqrt(13)`

Promotional Banner

Similar Questions

Explore conceptually related problems

If vec aa n d vec b are any two vectors of magnitudes 2 and 3, respectively, such that |2( vec axx vec b)|+|3( vec adot vec b)|=k , then the maximum value of k is a. sqrt(13) b. 2sqrt(13) c. 6sqrt(13) d. 10sqrt(13)

If vec a and vec b are any two vectors of magnitudes 2 and 3, respectively, such that |2( vec axx vec b)|+|3( vec a. vec b)|=k , then the maximum value of k is a. sqrt(13) b. 2sqrt(13) c. 6sqrt(13) d. 10sqrt(13)

If vec a and vec b are any two vectors of magnitudes 2 and 3, respectively, such that |2( vec axx vec b)|+|3( vec a. vec b)|=k , then the maximum value of k is a. sqrt(13) b. 2sqrt(13) c. 6sqrt(13) d. 10sqrt(13)

If vec a and vec b are any two vectors of magnitudes 2 and 3, respectively,such that |2(vec a xxvec b)|+|3(vec a*vec b)|=k, then the maximum value of k is sqrt(13) b.2sqrt(13) c.6sqrt(13) d.10sqrt(13)

If vec a and vec b are any two vectors of magnitudes 2 and 3 respectively and maximum value of |2(vec a timesvec b)|+|3(vec a*vec b)| is sqrt(13) then k=

If vec a\ a n d\ vec b are two vectors of magnitudes 3 and (sqrt(2))/3 respectively such that vec axx vec b is a unit vector. Write the angle between vec a\ a n d\ vec bdot

If vec a\ a n d\ vec b are two vectors of magnitudes 3 and (sqrt(2))/3 respectively such that vec axx vec b is a unit vector. Write the angle between vec a\ a n d\ vec bdot

If vec aa n d vec b are any two vectors of magnitudes 1 and 2, respectively, and (1-3 vec adot vec b)^2+|2 vec a+ vec b+3( vec axx vec b)|^2=47 , then the angel between vec aa n d vec b is pi//3 b. pi-cos^(-1)(1//4) c. (2pi)/3 d. cos^(-1)(1//4)

If vec aa n d vec b are any two vectors of magnitudes 1 and 2, respectively, and (1-3 vec adot vec b)^2+|2 vec a+ vec b+3( vec axx vec b)|^2=47 , then the angel between vec aa n d vec b is a. pi//3 b. pi-cos^(-1)(1//4) c. (2pi)/3 d. cos^(-1)(1//4)

Find the angle between two vectors vec aa n d vec b with magnitudes sqrt(3) and 2 respectively and such that vec adot vec b=sqrt(6.)