Home
Class 12
MATHS
In the given figue vertices of DeltaABC ...

In the given figue vertices of `DeltaABC` lie on `y=f(x)=ax^(2)+bx+c`. The `DeltaAB` is right angled isosceles triangle whose hypotenuse `AC=4sqrt(2)` units.

Number of integral value of `lamda` for which `(lamda)/2` lies between the roots of `f(x)=0`, is

Promotional Banner

Similar Questions

Explore conceptually related problems

In the given figue vertices of DeltaABC lie on y=f(x)=ax^(2)+bx+c . The DeltaAB is right angled isosceles triangle whose hypotenuse AC=4sqrt(2) units. y=f(x) is given by

In the given figue vertices of DeltaABC lie on y=f(x)=ax^(2)+bx+c . The DeltaAB is right angled isosceles triangle whose hypotenuse AC=4sqrt(2) units. y=f(x) is given by

In the given figue vertices of DeltaABC lie on y=f(x)=ax^(2)+bx+c . The DeltaABC is right angled isosceles triangle whose hypotenuse AC=4sqrt(2) units. y=f(x) is given by

In the given figue vertices of DeltaABC lie on y=f(x)=ax^(2)+bx+c . The DeltaABC is right angled isosceles triangle whose hypotenuse AC=4sqrt(2) units. y=f(x) is given by

In the given figure vertices of DeltaABC lie on y=f(x)=ax^(2)+bx+c . The DeltaABC is right angled isosceles triangle whose hypotenuse AC=4sqrt(2) units. y=f(x) is given by

In the given figue vertices of DeltaABC lie on y=f(x)=ax^(2)+bx+c . The DeltaAB is right angled isosceles triangle whose hypotenuse AC=4sqrt(2) units. Minimum valueof y=f(x) is

In the given figue vertices of DeltaABC lie on y=f(x)=ax^(2)+bx+c . The DeltaAB is right angled isosceles triangle whose hypotenuse AC=4sqrt(2) units. Minimum valueof y=f(x) is

In the given figue vertices of DeltaABC lie on y=f(x)=ax^(2)+bx+c . The DeltaABC is right angled isosceles triangle whose hypotenuse AC=4sqrt(2) units. Minimum valueof y=f(x) is

In the given figue vertices of DeltaABC lie on y=f(x)=ax^(2)+bx+c . The DeltaABC is right angled isosceles triangle whose hypotenuse AC=4sqrt(2) units. Minimum valueof y=f(x) is

In the given figure vertices of DeltaABC lie on y=f(x)=ax^(2)+bx+c . The DeltaABC is right angled isosceles triangle whose hypotenuse AC=4sqrt(2) units. Minimum valueof y=f(x) is