Home
Class 10
MATHS
ज्ञात कीजिए कि क्या g(x),p(x) का ए...

ज्ञात कीजिए कि क्या g(x),p(x) का एक गुणनखण्ड है । यदि `p(x)=x^(3)+x^(2)+3x+175` तथा `g(x)=(x+5)`?

Promotional Banner

Similar Questions

Explore conceptually related problems

Divide p(x)=x^3+3x^2+3x+1 by g(x)=x+2

divide p(x)=x^3+3x^2+3x+1 by g(x)= x+2

(iv) Divide P(x)=2x^(2)-3x+5 by g(x)=x-3

2x-3y is a factor of: 2x-3yकिसका एक गुणनखण्ड है:

If g(x)=x+1 and p(x)=2x^3+x^2-2x+1 then (p(x))/(g(x))=?

Divide the polynomial p(x) by the polynomial g(x) and find the quotient and remainder in each of the following : i] p(x) = x^(3) - 3x^(2) + 5x - 3, g(x) = x^(2) - 2 ii] p(x) = x^(4) - 3x^(2) + 4x + 5, g(x) = x^(2) + 1 - x iii] p (x) = x^(4) - 5 x + 6 g(x) = 2 - x^(2)

Divide p(x) by g(x), where p(x) = x+3x^(2) -1 and g(x) = 1+x .

Check whether p(x) is a multiple of g(x) or not. p(x) = x^(3) -5x^(2) + 4x -3, g(x) = x-2