Home
Class 12
MATHS
If P is a point on the hyperbola x^2/7-y...

If `P` is a point on the hyperbola `x^2/7-y^2/3=1 and N` is the foot of perpendicular from `P` on the transverse axis. The tangent to the hyperbola at `P` meets the transverse axis at `T.` If `O` is the centre of hyperbola, then `OT.ON=` (A) 4 (B) 7 (C) 3 (D) 10

Promotional Banner

Similar Questions

Explore conceptually related problems

N is the foot of the perpendicular from P on the transverse axis. The tangent to the hyperbola at P meets the transverse axis at T. If O is the center of the hyperbola the OT.ON is equal to:

P is a point on the hyperbola (x^(2))/(a^(2))-(y^(2))/(b^(2))=1 , and N is the foot of the perpendicular from P on the transverse axis. The tangent to the hyperbola at P meets the transverse axis at T. If O is the centre of the hyperbola, then OT.ON is equal to

P is a point on the hyperbola (x^(2))/(y^(2))-(y^(2))/(b^(2))=1 , and N is the foot of the perpendicular from P on the transverse axis. The tantent to the hyperbola at P meets the transverse axis at T. If O is the centre of the hyperbola, then OT.ON is equal to

P is a point on the hyperbola (x^(2))/(y^(2))-(y^(2))/(b^(2))=1 , and N is the foot of the perpendicular from P on the transverse axis. The tantent to the hyperbola at P meets the transverse axis at T. If O is the centre of the hyperbola, then OT.ON is equal to

P is a point on the hyperbola (x^(2))/(a^(2))-(y^(2))/(b^(2))=1 , and N is the foot of the perpendicular from P on the transverse axis. The tantent to the hyperbola at P meets the transverse axis at T. If O is the centre of the hyperbola, then OT.ON is equal to

P is a point on the hyperbola (x^(2))/(a^(2))-(y^(2))/(b^(2))=1 , and N is the foot of the perpendicular from P on the transverse axis. The tantent to the hyperbola at P meets the transverse axis at T. If O is the centre of the hyperbola, then OT.ON is equal to

P is a point on the hyperbola (x^(2))/(a^(2))-(y^(2))/(b^(2))=1 , and N is the foot of the perpendicular from P on the transverse axis. The tantent to the hyperbola at P meets the transverse axis at T. If O is the centre of the hyperbola, then OT.ON is equal to

P is a point on the hyperbola x^2/a^2-y^2/b^2=1 ; N is a foot of perpendicular from P on the transverse axis . The tangent to hyperbola at P meets the transeverse axis at T . If O is the center of the hyperbola ; then find the value of OTxxON.

P is a point on the hyperbola (x^(2))/(a^(2))-(y^(2))/(b^(2))=1 , N is the foot of the perpendicular from P on the transverse axis. The tangent to the hyperbola at P meets the transverse axis at T . If O is the centre of the hyperbola, then OT . ON is equal to