Home
Class 12
MATHS
tan^(-1)[(3a^(2)x-x^(3))/(a^(3)-3ax^(2))...

`tan^(-1)[(3a^(2)x-x^(3))/(a^(3)-3ax^(2))]`

Promotional Banner

Similar Questions

Explore conceptually related problems

Prove that tan^(-1)((3a^2x-x^3)/(a^3-3ax^2))=3tan^(-1)""(x)/a, agt 0 ,(-a)/sqrt3lexlea/sqrt3

Write the following functions in the simplest form : tan^(-1)((3a^2x - x^3)/(a^3- 3ax^2)), a gt 0, -a/sqrt3 le x le a/sqrt3

tan^(-1)((3x-x^(3))/(1-3x^(2)))

Differentiate tan^(-1)((3a^2x-x^3)/(a^3-3a x^2)),\ -1/(sqrt(3))

Differentiate tan^(-1)((3a^2x-x^3)/(a^3-3a x^2)),\ -1/(sqrt(3))

If y = Tan^(-1)((3a^2x-x^3)/(a^3-3ax^2)) then (dy)/(dx)=

Differentiate 'tan^(^^)(-1)((3a^(^^)2x-x^(^^)3)/(a^^3-3ax^(^^)2),lambda-1/(sqrt(3))

Tan^(-1)((3x-x^(3))/(1-3x^(2)))=

Prove that 3tan^(-1)x=tan^(-1)((3x-x^3)/(1-3x^2))

Prove that tan^(-1)x+"tan"^(-1)(2x)/(1-x^(2))=tan^(-1)[(3x=x^(3))/(1-3x^(2))],|x|lt1/(sqrt(3))