Home
Class 12
MATHS
(d)/(dx)[sin^(-1)sqrt(((1-x))/(2)]=...

`(d)/(dx)[sin^(-1)sqrt(((1-x))/(2)]=`

Promotional Banner

Similar Questions

Explore conceptually related problems

(d)/(dx)[sin^(-1)(x sqrt(1-x)-sqrt(x)sqrt(1-x^(2)))] is

(d)/(dx)[sin^(-1)(xsqrt(1 - x)- sqrt(x)sqrt(1 - x^(2)))] is equal to

(d)/(dx)[sin^(-1)x+sin^(-1)sqrt(1-x^(2))]=

(d)/(dx)[sin^(-1)x+sin^(-1)sqrt(1-x^(2))]=

(d)/(dx)[sin^(-1)((sqrt(1+x)+sqrt(1-x))/(2))]=

Prove that (d)/(dx)(sin^(-1)x)=(1)/(sqrt(1-x^(2)) , where x in [-1,1].

(d)/(dx)[sqrt((1-sin2x)/(1+sin2x))]=

d/(dx)[sin^(- 1)((sqrt(1+x)+sqrt(1-x))/2)]=

(d)/(dx)[tan^-1((sqrt(1+x^(2))-1)/(x))]=

d/(dx) (sin^(-1) x/a)