Home
Class 12
MATHS
Range of f(x)=[1/(log(x^(2)+e))]+1/sqrt(...

Range of `f(x)=[1/(log(x^(2)+e))]+1/sqrt(1+x^(2)),` where `[*]` denotes greatest integer function, is

Promotional Banner

Similar Questions

Explore conceptually related problems

f(x)=1/sqrt([x]^(2)-[x]-6) , where [*] denotes the greatest integer function.

f(x)=1/sqrt([x]^(2)-[x]-6) , where [*] denotes the greatest integer function.

f(x)=1/sqrt([x]^(2)-[x]-6) , where [*] denotes the greatest integer function.

Domain of f(x)=sqrt([x]-1+x^(2)); where [.] denotes the greatest integer function,is

The function f (x)=[sqrt(1-sqrt(1-x ^(2)))], (where [.] denotes greatest integer function):

The range of the function f(x)=(sin(pi[x^(2)+1]))/(x^(4)+1), where [.] denotes the greatest integer function,is

find the domain of f(x)=1/sqrt([x]^(2)-[x]-6) , where [*] denotes the greatest integer function.

The range of the function f(x)=[log_((2)/(3))|(x^(2)-1)/(x^(2)+1)|] where [-1 denotes the greatest integer function is

The domain of function f (x) = log _([x+(1)/(2)])(2x ^(2) + x-1), where [.] denotes the greatest integer function is :

The domain of function f (x) = log _([x+(1)/(2)])(2x ^(2) + x-1), where [.] denotes the greatest integer function is :