Home
Class 10
MATHS
p^(2)x^(2)+c^(2)x^(2)-ac^(2)-ap^(2)...

`p^(2)x^(2)+c^(2)x^(2)-ac^(2)-ap^(2)`

Promotional Banner

Similar Questions

Explore conceptually related problems

If the square of the length of the tangents from a point P to the circles x^(2)+y^(2)=a^(2), x^(2)+y^(2)=b^(2), x^(2)+y^(2)=c^(2) are in A.P. then a^(2),b^(2),c^(2) are in

if the square of the length of the tangents from point P to the circleS x^(2)+y^(2)=a^(2), x^(2)+y^(2)=b^(2), x^(2)+y^(2)=c^(2) are in A.P. Then a^(2), b^(2), c^(2) are is

If the squares of the lengths of the tangents from a point P to the circles x^(2)+y^(2)=a^(2) , x^(2)+y^(2)=b^(2) , x^(2)+y^(2)=c^(2) are in A.P then a^(2),b^(2),c^(2) are in

If the square of the length of the tangents from a point P to the circles x^(2)+y^(2)=a^(2), x^(2)+y^(2)=b^(2), x^(2)+y^(2)=c^(2) are in A.P. then a^(2),b^(2),c^(2) are in

The determinant Delta=|{:(a^(2)+x^(2),ab,ac),(ab,b^(2)+x^(2),bc),(ac,bc,c^(2)+x^(2)):}| is divisible by

The determinant Delta = |(a^(2) + x^(2),ab,ac),(ab,b^(2) + x^(2),bc),(ac,bc,c^(2) + x^(2))| is divisible

The determinant Delta=|{:(a^(2)+x^(2),ab,ac),(ab,b^(2)+x^(2),bc),(ac,bc,c^(2)+x^(2)):}| is divisible by

If r is the ratio of the roots of the equation ax^(2)+bx+c=0, then r is the root of the equation.(A) acx^(2)+(2ac-b^(2))x+ac=0 (C) acx^(2)+(2ac-b^(2))x-ac=0 (B) acx^(2)-(2ac-b^(2))x+ac=0(D)acx^(2)-(2ac-b^(2))x-ac=0

Show that |(a^(2)+x^(2),ab,ac),(ab,b^(2)+x^(2),bc),(ac,bc,c^(2)+x^(2))| is divisible by x^(2) .