Home
Class 12
MATHS
Consider function f(x) = sin^(-1) (sin x...

Consider function `f(x) = sin^(-1) (sin x) + cos^(-1) (cos x), x in [0, 2pi]`
(a) Draw the graph of `y = f (x)`
(b) Find the range of `f(x)`
(c) Find the area bounded by `y = f(x)` and x-axis

Promotional Banner

Similar Questions

Explore conceptually related problems

Let the function f(x) = tan^(1-) (sin x + cos x) be defined on [ 0, 2 pi] Then f(x) is

Find the range of f(x)=|sin x|+|cos x|,x in R

Find the range of f(x) = (sin^(-1) x)^(2) + 2pi cos^(-1) x + pi^(2)

Find the range of f(x) = (sin^(-1) x)^(2) + 2pi cos^(-1) x + pi^(2)

Find the range of f(x) = (sin^(-1) x)^(2) + 2pi cos^(-1) x + pi^(2)

Find the range of f(x) = (sin^(-1) x)^(2) + 2pi cos^(-1) x + pi^(2)

Define the function, f(x)=cos^(-1) (cos x)-sin^(-1) (sin x)" in "[0,2pi] and find the area bounded by the graph of the function and the x-axis.

f(x)=(1)/(sin x cos x) find ,f'(x)=?

Consider the functions f(x) = sin x and g(x) = cos x in the interval [0,2 pi] find the area enclosed by these curves in the given interval ?

Consider the real values function 2 f(sin x ) + f(cos x) = x , then f(1/2)=