Home
Class 12
MATHS
If ^(n)C(r-1)=330,^nC(r)=462,^(n)C(r+1)=...

`If ^(n)C_(r-1)=330,^nC_(r)=462,^(n)C_(r+1)=462rArr r=`

Promotional Banner

Similar Questions

Explore conceptually related problems

""^(n) C_(r-1) = 330 ,""^(n)C_(r)=462 , ""^(n)C_(r+1) = 462 implies r=

If ^(n)C_(r)=84,quad nC_(r-1)=36, and ^(n)C_(r+1)=126 then find the value of n.

If nC_(r-1)=36,nC_(r)=84 and nC_(r+1)=126 then (a) n=8,r=4( b) n=9,r=3(c)n=7,r=5(d) non of these

Prove that .^(n+1)C_(r+1)+^nC_r+^nC_(r-1)=^(n+2)C_(r+1)

If ^(n+1)C_(r+1): ^nC_r: ^(n-1)C_(r-1)=11:6:2 find the values of n and r.

If .^(n+1)C_(r+1.): ^nC_r: ^(n-1)C_(r-1)=11:6:3 find the values of n and r.

If ^nC_r=84 ,^n C_(r-1)=36 ,a n d^n C_(r+1)=126 , then find the value of ndot

nC_(r):^(n)C_(r+1)=1:2 and ^(n)C_(r+1):^(n)C_(r+2)=2:3, findn and r

Prove that n.^(n-1)C_(r-1)=(n-r-1) ^nC_(r-1)