Home
Class 12
MATHS
If a,b,c are real numbers such that a+b+...

If a,b,c are real numbers such that a+b+c=0 and `a^(2)+b^(2)+c^(2)=1,` then
`(3a+5b-8c)^(2)+(-8a+3b+5c)^(2)+(5a-8b+3c)^(2)` is equal to

Promotional Banner

Similar Questions

Explore conceptually related problems

Let a,b and c be real numbers such that a7b+8c and 8a+4bc=7, then find a^(2)-b^(2)+c^(2)

Let a, b and c be real numbers such that a - 7b + 8c = 4 and 8a + 4b - c = 7. What is the value of a^(2) - b^(2) + c^(2) .

Subtract 4a^(2) + 5b^(2) - 6c^(2) + 8 from 2a^(2) -3b^(2) - 4c^(2) - 5 .

If a,b and c are real numbers and if a^(5)b^(3)c^(8)=(9a^(3)c^(8))/(b^(-3)) , then a could equal

If a+b+ 2c=0 , then the value of a^(3) + b^(3) + 8c^(3) is equal to

If a^(2) + b^(2) + c^(2) = 2(a-b-c)-3 , then the value of 4a - 3b + 5c is

If a ,\ b ,\ c are positive real numbers, then root(5)(3125\ a^(10)b^5c^(10)) is equal to (a)\ 5a^2b c^2 (b) 25 a b^2c (c) 5a^3b c^3 (d) 125\ a^2b c^2

If a^(2)+b^(2)+c^(2)=1 where, a,b, cin R , then the maximum value of (4a-3b)^(2) + (5b-4c)^(2)+(3c-5a)^(2) is