Home
Class 11
MATHS
[sum(r=1)^n(1/r-1/(r+1))]...

`[sum_(r=1)^n(1/r-1/(r+1))]`

Promotional Banner

Similar Questions

Explore conceptually related problems

The absolute term in P(x) = sum_(r=1)^n (x-1/r)(x-1/(r+1))(x-1/(r+2)) as n approches to infinity is :

The value of sum_(r=1)^(n)(-1)^(r-1)((r )/(r+1))*^(n)C_(r ) is

The value of sum_(r=1)^(n)(-1)^(r-1)((r )/(r+1))*^(n)C_(r ) is (a) 1/(n+1) (b) 1/n (c) 1/(n-1) (d) 0

The value of sum_(r=1)^(n)(-1)^(r-1)((r )/(r+1))*^(n)C_(r ) is (a) 1/(n+1) (b) 1/n (c) 1/(n-1) (d) 0

The absolute term in P(x)=sum_(r=1)^(n)(x-(1)/(r))(x-(1)/(r+1))(x-(1)/(r+2)) as n approches to infinity is :

Let a= 1/(n!) + sum_(r=1)^(n-1) r/((r+1)!), b= 1/(m!)+sum_(r=1)^(m-1) r/((r+1)!)then a+b= (A) 0 (B) 1 (C) 2 (D) none of these

Find sum_(r=1)^n r(r - 1) (r + 5)

Find the sum sum_(r=1)^(n)(r)/(r+1)!

Find the sum sum_(r=1)^n r/(r+1)!