Home
Class 12
MATHS
A variable plane which remains at a con...

A variable plane which remains at a constant distance P from the origin (0) cuts the coordinate axes in A, B and C

Promotional Banner

Similar Questions

Explore conceptually related problems

A variable plane which remains at a constant distance p from the origin cuts the coordinate axes in A, B, C. The locus of the centroid of the tetrahedron OABC is x^(2)y^(2)+y^(2)z^(2)+z^(2)x^(2)=(k)/(p^(2))x^(2)y^(2)z^(2), then root(5)(2k) is

A variable plane which remains at a constant distance p from the origin cuts the coordinate axes in A, B, C. The locus of the centroid of the tetrahedron OABC is x^(2)y^(2)+y^(2)z^(2)+z^(2)x^(2)=(k)/(p^(2))x^(2)y^(2)z^(2), then root(5)(2k) is

A variable plane which remains at a constant distance p from the origin cuts the coordinate axes in A, B, C. The locus of the centroid of the tetrahedron OABC is x^(2)y^(2)+y^(2)z^(2)+z^(2)x^(2)=(k)/(p^(2))x^(2)y^(2)z^(2), then root(5)(2k) is

A variable plane which remains at a constant distance p from the origin cuts the coordinate axes in A, B, C. The locus of the centroid of the tetrahedron OABC is x^(2)y^(2)+y^(2)z^(2)+z^(2)x^(2)=(k)/(p^(2))x^(2)y^(2)z^(2), then root(5)(2k) is

A variable plane which remains at a constant distance 3p from the origin cuts the coordinate axes at A, B, C. Show that the locus of the centroid of triangle ABC is x^(-2) + y^(-2) + z^(-2) = p^(-2) .

A variable plane which remains at a constant distance p from the origin cuts the co-ordinate axes at A, B, C. Through A,B,C planes are drawn parallel to the co-ordinate planes. Show that locus of the point of intersection is : x^(-2)+y^(-2)+z^(-2)=p^-2

A variable plane which remains at a constant distance 3p from the origin cuts the coordinate axes at A, B, C. Show that the locus of the centroid of triangle ABC is 1/x^2+1/y^2+1/z^2=1/p^2 .

(i) A variable plane, which remains at a constant distance '3p' from the origin cuts the co-ordinate axes at A, B, C. Show that the locus of the centroid of the triangle ABC is : (1)/(x^(2)) + (1)/(y^(2)) + (1)/(z^(2)) = (1)/(p^(2)) . (ii) A variable is at a constant distance 'p' from the origin and meets the axes in A, B, C respectively, then show that locus of the centroid of th triangle ABC is : (1)/(x^(2)) + (1)/(y^(2)) + (1)/(z^(2)) = (9)/(p^(2)).

A variable plane which remains at a constant distance 3p from the origin cuts the coordinate axes at A,B,C. show that the locus of the centroid of the triangle ABC is x^-2+y^-2+z^-2=p^-2 .