Home
Class 11
MATHS
Show that (x^3+x^2+x+1)/(x^3-x^2+x-1)=(x...

Show that `(x^3+x^2+x+1)/(x^3-x^2+x-1)=(x^2+x+1)/(x^2-x+1)`,is not possible for any `x epsilon R`.

Text Solution

Verified by Experts

`(x^3+x^2+x+1)/(x^3-x^2+x-1) = (x^2+x+1)/(x^2-x+1)`
=>`((x^3+x)+(x^2+1))/((x^3+x)+(x^2+1)) = ((x^2+1)+x)/((x^2+1)-x)`
We know, `(a+b)/(a-b) = a/b`.So,
`=>(x^3+x)/(x^2+1) = (x^2+1)/x`
`=>x(x^3+x) = (x^2+1)^2`
`=>x^4+x^2 = x^4+1+2x^2`
`=>x^2 = -1`
For any real number `x`, square of `x` can not be negative. So, both sides can not be equal.
Promotional Banner

Similar Questions

Explore conceptually related problems

((x+1)/(x^(2/3)-x^(1/3)+1)-(x-1)/(x-x^(1/2)))=

show that |[1,x,x^2],[x^2,1,x],[x,x^2,1]| = (1-x^3)^2

L_(x rarr1)[(x-1)/(x^(2)-x)-(1)/(x^(3)-3x^(2)+x)]

|{:(3x^2,3x,1),(x^2+2x,2x+1,1),(2x+1,x+2,1):}|=(x-1)^3

lim_(x rarr1)[(x-1)/(x^(2)-x)-(1)/(x^(3)-3x^(2)+x)]

show that tan^(-1)x+tan^(-1)((2x)/(1-x^2))=tan^(-1)((3x-x^3)/(1-3x^2)),|x|<1/sqrt3

show that tan^(-1)x+tan^(-1)((2x)/(1-x^2))=tan^(-1)((3x-x^3)/(1-3x^2)),|x|<1/sqrt3

Without expanding, find the value of: (i) (x + 1)^4 - 4(x + 1)^3 (x - 1) + 6(x + 1)^2 (x - 1)^2 - 4(x + 1) (x - 1)^3 + (x -1)^4 (ii) (2x - 1)^4 + 4(2x - 1)^3 (3 - 2x) + 6(2x - 1)^2 (3 - 2x)^2 + 4(2x - 1) (3 - 2x)^3 + (3 - 2x)^4