Home
Class 12
MATHS
Find the number of integral values of x ...

Find the number of integral values of x in the domain of `f(x) = cos^(-1) [2 - 4x^2]`. (where [.] denotes greatest integer function)

Promotional Banner

Similar Questions

Explore conceptually related problems

The domain of f(x)=sqrt([x]^(2)-7[x]+12) (where [.] denotes greatest integer function) is

Domain of cos^(-1)[2x^(2)-3] where [ ] denotes greatest integer function, is

Domain of f(x)=log(x^2+5x+6)/([x]-1) where [.] denotes greatest integer function:

Domain of f(x)=sqrt([x]-1+x^(2)); where [.] denotes the greatest integer function,is

find the domain of f(x)=1/sqrt([x]^(2)-[x]-6) , where [*] denotes the greatest integer function.

Domain of f(x)=sin^-1[2-4x^2] is ([.] denotes the greatest integer function)

The domain of f(x)=log_(e)(4[x]-x) ; (where [1 denotes greatest integer function) is

The domain of definition of f(x)=sin^(- 1)[2-4x^2] is ([.] denotes the greatest integer function).