Home
Class 12
MATHS
If x=1+log(a) bc, y=1+log(b) ca, z=1+log...

If `x=1+log_(a) bc, y=1+log_(b) ca, z=1+log_(c) ab`, then `(xyz)/(xy+yz+zx)` is equal to

Promotional Banner

Similar Questions

Explore conceptually related problems

If x = 1 + log_(a) bc, y = 1 + log_(b) ca, z = 1 + log_(c) ab, then xy + yz + zx =

If =1+log_(a)bc,y=1+log_(b)ca,z=1+log_(c)ab then prove that xyz=xy+yz+zx

If x = log_(a) bc, y = log_(b) ca, z = log_(c) ab, then the value of (1)/(1 + x) + (1)/(1 + y) + (1)/(l + z) will be

If x=log_(a)(bc),y=log_(b)(ca),z=log_(c)(ab) then (1)/(x+1)+(1)/(y+1)+(1)/(z+1) is equal to

If x=log_(a)(bc),y=log_(b)(ca) and z=log_(c )(ab) show that x+y+z+2=xyz

If =1+log_(a)(bc);y=1+log_(b)(ac);z=1+log_(c)(ab) then prove that xyz=xy+yz+zx

If x=log_(a)bc, y=log_(b)ac and z=log_(c)ab then which of the following is equal to unity ?

If x=log_(a)bc, y=log_(b)ac and z=log_(c)ab then which of the following is equal to unity ?

If x=log_(b)a,y=log_(c)b,z=log_(a)c then xyz=

If x = log_(a)(bc), y = log_(b)(ca), z = log_(c)(ab) , then find 1/(x+1) + 1/(y+1) + 1/(z+1)