Home
Class 12
MATHS
Find the altitude of a parallelopiped wh...

Find the altitude of a parallelopiped whose three conterminous edges are verctors `A=hat(i)+hat(j)+hat(k), B=2hat(i)+4hat(j)-hat(k) and C=hat(i)+hat(j)+3hat(k)` with A and B as the sides of the base of the parallelopiped.

Promotional Banner

Similar Questions

Explore conceptually related problems

Find the volume of the parallelopiped whose coterminus edges are given by vectors 2hat(i)+3hat(j)-4hat(k),5hat(i)+7hat(j)+5hat(k)and4hat(i)+5hat(j)-2hat(k) .

Find the volume of the parallelopiped whose cotermius edges are 2hat(i)+hat(j)+3hat(k),-hat(i)+2hat(j)+hat(k) and 3hat(i)+hat(j)+2hat(k) .

If a=hat(i)+2hat(j)-2hat(k), b=2hat(i)-hat(j)+hat(k) and c=hat(i)+3hat(j)-hat(k) , then atimes(btimesc) is equal to

If a=hat(i)+2hat(j)-2hat(k), b=2hat(i)-hat(j)+hat(k) and c=hat(i)+3hat(j)-hat(k) , then atimes(btimesc) is equal to

If a=hat(i)+2hat(j)-2hat(k), b=2hat(i)-hat(j)+hat(k) and c=hat(i)+3hat(j)-hat(k) , then atimes(btimesc) is equal to

Find the volume tetrahedron whose coterminus edges are 7hat(i)+hat(k),2hat(i)+5hat(j)-3hat(k)and 4hat(i)+3hat(j)+hat(k) .