Home
Class 11
MATHS
i^(53) + i^(72) + i^(93) + i^(102) = 2i....

`i^(53) + i^(72) + i^(93) + i^(102) = 2i`.

Promotional Banner

Similar Questions

Explore conceptually related problems

6i^(50) + 5i^(33) - 2i^(15) + 6i^(48) = 7i .

i+ i^(2) + i^(3) + i^(4) + …. + i^(100)

i+ 2i^(2) + 3i^(3) + 4i^(4) + …. + 100i^(100) =

i+i^(2)+i^(3)+"………"+i^(101)=

i+i^(2)+i^(3)+i^(4)

Simplify: i+ 2i^(2) + 3i^(3) + i^(4)

The value of (1)/(i) + (1)/(i^2) + (1)/(i^3) + …. + (1)/(i^(102) ) is

Simplify the following : (i) i^7 " " (ii) i^(1729) " " (iii) i^(-1924) + i^(2018) " " (iv) sum_(n=1)^(102) i^(n) " " (v) i i^2 i^3 …..i^(40)

Find the value of i^(73)+i^(74)+i^(75)+i^(76) (A) 0 (B) 2 (C) 2i (D) -2i