Home
Class 12
MATHS
If Cos^(-1)(x/a)+Cos^(-1)(y/b)=theta,"th...

If `Cos^(-1)(x/a)+Cos^(-1)(y/b)=theta,"then "x^(2)/a^(2)-(2xy)/(ab)costheta+y^(2)/b^(2)=`

Promotional Banner

Similar Questions

Explore conceptually related problems

cos^(-1)(x//a)+cos^(-1)(y//b)=theta ,then (x^(2))/(a^(2))-(2xy)/(ab)cos theta+(y^(2))/(b^(2))=

If cos^(-1)""x/a+cos^(-1)""y/b=theta , Prove that x^(2)/a^(2)-(2xy)/(ab)costheta+y^(2)/b^(2)=sin^(2)theta .

If "cos"^(-1)(x/a) ="cos"^-1(y/b) = theta, "prove that" x^2/a^2 -(2xy)/(ab) "cos" theta +y^2/b^2 ="sin"^2 theta.

If cos^(-1)(x/m)+cos^(-1)(y/n)=theta , then x^2/m^2-(2xy)/(mn)costheta+y^2/n^2 is equal to

If cos ^(-1)\ (x)/(a) + cos^(-1)\ (y)/(b) = theta , then (x^(2))/(a^(2)) +(y^(2))/(b^(2))=?

If "cos"^(-1) x/a +"cos"^(-1) y/b=alpha , then : x^2/a^2 -(2xy)/(ab) cos alpha + y^2/b^2 equals :