Home
Class 12
MATHS
tan(cot^(-1)a)=cot(tan^(-1)a)...

`tan(cot^(-1)a)=cot(tan^(-1)a)`

Promotional Banner

Similar Questions

Explore conceptually related problems

Prove that tan(cot^(-1)x)=cot(tan^(-1)x)

Prove that tan(cot^(-1)x)=cot(tan^(-1)x)

Prove that tan(cot^(-1)x)=cot(tan^(-1)x)

cot(tan^(-1)a+cot^(-1)a)

Prove that tan(cot^-1x) = cot(tan^-1x) . State with reason whether the equality is valid for all values of x.

2"tan"(tan^(-1)(x)+tan^(-1)(x^3)),w h e r ex in R-{-1,1}, is equal to (2x)/(1-x^2) t(2tan^(-1)x) tan(cot^(-1)(-x)-cot^(-1)(x)) "tan"(2cot^(-1)x)

2tan(tan^(-1)(x)+tan^(-1)(x^(3))), where x in R-{-1,1} is equal to (2x)/(1-x^(2))t(2tan^(-1)x)tan(cot^(-1)(-x)-cot^(-1)(x))tan(2cot^(-1)x)

2"tan"(tan^(-1)(x)+tan^(-1)(x^3)),w h e r ex in R-{-1,1}, is equal to (2x)/(1-x^2) t(2tan^(-1)x) tan(cot^(-1)(-x)-cot^(-1)(x)) "tan"(2cot^(-1)x)

Find the value of cot(tan^(-1)a+cot^(-1)a)

Find the value of: cot(tan^(-1)a+cot^(-1)a)