Home
Class 12
BIOLOGY
Half life period of C^14 is : -...

Half life period of `C^14` is : -

Promotional Banner

Similar Questions

Explore conceptually related problems

A piece of wood from an archaeological source has a "^14C activity which ls 60% of the activity found in fresh wood today. Calculate the age of the archaeological sample (the half life period of C-14 is 5770 years).

Half - life period of ""^(14)C is 5770 years . If and old wooden toy has 0.25% of activity of ""^(14)C Calculate the age of toy. Fresh wood has 2% activity of ""^(14)C .

Half - life period of ""^(14)C is 5770 years . If and old wooden toy has 0.25% of activity of ""^(14)C Calculate the age of toy. Fresh wood has 2% activity of ""^(14)C .

The activity of an old piece of wood is just one fourth of a fresh piece of wood. If half life period of ""^(14)C is about 6000 years, the age of old piece of wood is:

Carbon -14 used to determine the age of organic material. The procedure is absed on the formation of C^(14) by neutron capture iin the upper atmosphere. ._(7)N^(14)+._(0)n^(1) rarr ._(6)C^(14)+._(1)H^(1) C^(14) is absorbed by living organisms during photosynthesis. The C^(14) content is constant in living organism. Once the plant or animal dies, the uptake of carbon dioxide by it ceases and the level of C^(14) in the dead being falls due to the decay, which C^(14) undergoes. ._(6)C^(14)rarr ._(7)N^(14)+beta^(c-) The half - life period of C^(14) is 5770 year. The decay constant (lambda) can be calculated by using the following formuls : lambda=(0.693)/(t_(1//2)) The comparison of the beta^(c-) activity of the dead matter with that of the carbon still in circulation enables measurement of the period of the isolation of the material from the living cycle. The method, however, ceases to be accurate over periods longer than 30000 years. The proportion of C^(14) to C^(12) in living matter is 1:10^(12) . A nuclear explosion has taken place leading to an increase in the concentration of C^(14) in nearby areas. C^(14) concentration is C_(1) in nearby areas and C_(2) in areas far away. If the age of the fossil is determined to be T_(1) and T_(2) at the places , respectively, then