Home
Class 12
MATHS
Evaluate: underset(x rarr y)lim (cos^(2)...

Evaluate: `underset(x rarr y)lim (cos^(2)x - cos^(2)y)/(x^(2) - y^(2))`

Promotional Banner

Similar Questions

Explore conceptually related problems

Evaluate : underset(xrarry)"lim"(sin^(2)x-sin^(2)y)/(x^(2)-y^(2))

Prove : underset(xrarry)"lim"(cos^(2)x-cos^(2)y)/(x^(2)-y^(2))=-(sin2y)/(2y)

lim_ (x rarr y) (cos ^ (2) x-cos ^ (2) y) / (x ^ (2) -y ^ (2))

underset(x rarr 0)(lim) (cos 4x - 4 cos 2x + 3)/(x^(4)) =

Evaulate underset (x rarr 0)Lim (cos 2x-1)/(cos x-1) .

underset(y to x)lim (sin^(2)y-sin^(2)x)/(y-x)=

underset(x rarr 0)lim (sin(pi cos^(2) x))/(x^(2)) is equal to -

Evaluate : lim_(xrarry)(cos^2x-cos^2y)/(x^2-y^2)

the value of lim_(x rarr y)(sin^(2)x-sin^(2)y)/(x^(2)-y^(2)) equals

The limit underset( x rarr0 ) ( "lim") ( 1- cos x sqrt( cos 2x) )/( x^(2)) is equal to