Home
Class 11
MATHS
If the complex number z=x+i y satisfies...

If the complex number `z=x+i y` satisfies the condition `|z+1|=1,` then `z` lies on (a)x axis (b) circle with centre`(-1,0)` and radius`1` (c)y-axis (d) none of these

Promotional Banner

Similar Questions

Explore conceptually related problems

If the complex number z=x+ iy satisfies the condition |z+1|=1 , then z lies on

If the complex number z=x+i y satisfies the condition |z+1|=1, then z lies on (a)x axis (b) circle with centre(-1,0) and radius1 (c)y-axis (d) none of these

The complex number z which satisfies the condition |frac{i+z}{i-z}| = 1 lies on.

The complex number z , which satisfies the condition |(1+z)/(1-z)|=1 lies on

The complex number z which satisfies the condition |(i +z)/(i-z)|=1 lies on:

The complex number z which satisfies the condition |(i+z)/(i-z)| = 1 lies on

The complex number z satisfying the equation |z-i|=|z+1|=1 is

The complex number z satisfying the equation |z-i|=|z+1|=1

The complex number z = x + iy , which satisfies the equation |(z-5i)/(z+5i)| =1 , lies on: