Home
Class 12
MATHS
(1+x^(2))(dy)/(dx)+y=e^(tan^(-1)x)...

`(1+x^(2))(dy)/(dx)+y=e^(tan^(-1)x)`

Promotional Banner

Similar Questions

Explore conceptually related problems

Solve: (1+x^2)(dy)/(dx) = y+tan^(-1)x

y^(2)-(dy)/(dx)=x^(2)(dy)/(dx) A) y^(-1)+tan^(-1)x=c B) x^(-1)+tan^(-1)y=c C) y+tan^(-1)x=c D) x^(-1)+y^(-1)=tan^(-1)x+c

Solve: (1+x^2) dy/dx+y=e^(tan^-1x)

Solve the following differential equations. (1+x^2)dy/dx+y=e^(tan^-1x)

(dy)/(dx)=1+x tan(y-x)

Find (dy)/(dx) when x=e^(tan^(-1)((y-x^2)/(x^2)) .

Find dy/dx if y=e^(tan^-1(x^2)

IF y=e^(tan^(-1)x) then prove that : (1+x^(2))(d^2y)/(dx^2)+(2x-1)(dy)/(dx)=0 .