Home
Class 12
MATHS
If f(x)=(log)(x^2)(logx) , then f^(prime...

If `f(x)=(log)_(x^2)(logx)` , then `f^(prime)(x)` at `x=e` is (a) 0 (b) 1 (c) 1/e (d) 1/2e

Promotional Banner

Similar Questions

Explore conceptually related problems

If f(x)=(log)_(x^2)(logx), then f^(prime)(x) at x=e is 0 (b) 1 (c) 1/e (d) 1/2e

If f(x)=(log)_(x^2)(logx), then f^(prime)(x) at x=e is 0 (b) 1 (c) 1/e (d) 1/2e

If f(x)=log_x^(2)(logx) , then f(e)

If f(x)=(log)_x(log x),t h e nf^(prime)(x) at x=e is equal to (a) 1/e (b) e (c) 1 (d) zero

If f(x)=(log)_x(log x),t h e nf^(prime)(x) at x=e is equal to (a) 1/e (b) e (c) 1 (d) zero

If f(x)=(log)_(x^(2))(log x), then f'(x) at x=e is (a) 0(b)1(c)1/e (d) 1/2e

If f(x)=log_(x^(2))(log x),quad then f'(x) at x=e is 0( b) 1 (c) (1)/(e) (d) (1)/(2)e

If f(x)=(log)_x(lnx),t h e nf^(prime)(x) at x=e is equal to 1/e (b) e (c) 1 (d) zero

If f(x)=(log)_x(lnx),t h e nf^(prime)(x) at x=e is equal to 1/e (b) e (c) 1 (d) zero