Home
Class 11
MATHS
Let f be a function such that f(x+y)=f(x...

Let `f` be a function such that `f(x+y)=f(x)+f(y)` for all `xa n dya n df(x)=(2x^2+3x)g(x)` for all`x ,` where `g(x)` is continuous and `g(0)=3.` Then find `f^(prime)(x)dot`

Promotional Banner

Similar Questions

Explore conceptually related problems

Let f be a function such that f(x+y)=f(x)+f(y) for all x and y and f(x)=(2x^2+3x)g(x) for all x , where g(x) is continuous and g(0)=3. Then find f^(prime)(x)dot

Let f be a function such that f(x+y)=f(x)+f(y) for all x and y and f(x)=(2x^(2)+3x)g(x) for all x, where g(x) is continuous and g(0)=3 . Then find f'(x) .

Let f be a function such that f(x+y)=f(x)+f(y)" for all "x and y and f(x) =(2x^(2)+3x) g(x)" for all "x, " where "g(x) is continuous and g(0) = 3. Then find f'(x)

Let f be a function such that f(x+y)=f(x)+f(y)" for all "x and y and f(x) =(2x^(2)+3x) g(x)" for all "x, " where "g(x) is continuous and g(0) = 3. Then find f'(x)

Let f:R to R be a function satisfying f(x+y)=f(x)+f(y)"for all "x,y in R "If "f(x)=x^(3)g(x)"for all "x,yin R , where g(x) is continuous, then f'(x) is equal to

Let f:R to R be a function satisfying f(x+y)=f(x)+f(y)"for all "x,y in R "If "f(x)=x^(3)g(x)"for all "x,yin R , where g(x) is continuous, then f'(x) is equal to

Let f be function satisfying f(x+y)=f(x)+f(y) and f(x)=x^(2)g(x) , for all x and y, where g(x) is a continuous function. Then f'(x) is :