Home
Class 12
MATHS
If f'(x)=|x|-{x} where {x} denotes the f...

If `f'(x)=|x|-{x}` where `{x}` denotes the fractional part of x, then `f(x)` is decreasing in `(-1/2, k)`, find k.

Promotional Banner

Similar Questions

Explore conceptually related problems

If f(x)=|x|-{x} where {x} denotes the fractional part of x , then f(x) is dreasing in

if f(x) ={x^(2)} , where {x} denotes the fractional part of x , then

If f(x)={x^2}-({x})^2, where (x) denotes the fractional part of x, then

If f^(prime)(x)=|x|-{x}, where {x} denotes the fractional part of x , then f(x) is decreasing in (a) (-1/2,0) (b) (-1/2,2) (-1/2,2) (d) (1/2,oo)

If f^(prime)(x)=|x|-{x}, where {x} denotes the fractional part of x , then f(x) is decreasing in (a) (-1/2,0) (b) (-1/2,2) (-1/2,2) (d) (1/2,oo)

If f^(prime)(x)=|x|-{x}, where {x} denotes the fractional part of x , then f(x) is decreasing in (-1/2,0) (b) (-1/2,2) (-1/2,2) (d) (1/2,oo)

If f'(x)=|x|-{x}, where {x} denotes the fractional part of x, then f(x) is decreasing in (-(1)/(2),0)(b)(-(1)/(2),2)(-(1)/(2),2)(d)((1)/(2),oo)

If f(x)-{x^(2)}-({x})^(2), where (x) denotes the fractional part of x, then

Period of f(x)=cos2pi{x} is , where {x} denote the fractional part of x)