Home
Class 11
MATHS
Find the value of the expression 5^(log(...

Find the value of the expression `5^(log_(sqrt(5))2)+9^(log_3 7)-8^(log_2 5)`.

Text Solution

Verified by Experts

`5^(log_(sqrt5)2)+9^(log_(3)7)-8^(log_(2)5)`
`=sqrt5^(2(log_(sqrt5)2))+3^(2(log_(3)7))-2^(3(log_(2)5))`
`=sqrt5^((log_(sqrt5)2^2))+3^((log_(3)7^2))-2^((log_(2)5^3))`
We know, `a^(log_(a)x) = x`, So, our expression
`=2^2+7^2 - 5^3 = 4+49-125 = -72`
Promotional Banner

Similar Questions

Explore conceptually related problems

Find the value of the expressions (log2)^3+log8.log(5)+(log5)^3 .

Find the value of the expressions (log2)^3+log8.log(5)+(log5)^3 .

Find the value of the expressions (log2)^3+log8.log(5)+(log5)^3 .

Find the value of the expressions (log2)^3+log8.log(5)+(log5)^3 .

Find the value of the expressions (log2)^3+log8.log(5)+(log5)^3 .

The simplified value of the expression : 2^(log_(3)5)*2^(log_(3)5^(2)) - 5^(log_(3)2)*25^((log_(3)2)) is

The value of expression 3^sqrt(log_(27) 8)-2^sqrt(log_(32)243)-5^sqrt(log_(625) 81)+3^sqrt(log_9 25)+(sqrt2)^(log_2 9)+3^(log_4 25)-5^(log_4 9) , is less then

the value of expression (log2)^(3)+(log8)(log5)+(log5)^(3)+3, is

-(B)- The value of expression (log2)^(3)+(log8)(log5)+(log5)^(3)+3, is