Home
Class 12
MATHS
If x+y+z=xyz , " then " sum(3x-x^(3))/(1...

If `x+y+z=xyz , " then " sum(3x-x^(3))/(1-3x^(2))`=

Promotional Banner

Similar Questions

Explore conceptually related problems

If x+y+z=xyz , prove that: a) (3x-x^(3))/(1-3x^(2))+(3y-y^(3))/(1-3y^(2))+(3z-z^(3))/(1-3z^(2))= (3x-x^(3))/(1-3x^(2)).(3y-y^(3))/(1-3y^(2)).(3z-z^(3))/(1-3z^(2)) b) (x+y)/(1-xy) + (y+z)/(1-yz)+(z+x)/(1-zx)= (x+y)/(1-xy) .(y+z)/(1-yz).(z+x)/(1-zx)

If x+y+z =xyz, then sum(2x)/(1-x^(2))=

If x + y + z = xyz , prove that (3x -x^(3))/ (1-3x^(2)) + (3y -y^(3))/(1- 3y^(2)) +(3z -z^(3))/(1- 3z^(2)) = (3x -x^(3))/(1-3x)^(2) * (3y- y^(3))/(1-3x)^(2)* (3z- z^(3))/(1-3z)^(2) .

If x +y+ z=xyz , prove that : (3x-x^3)/(1-3x^2)+ (3y-y^3)/(1-3y^2)+(3z-z^3)/(1-3z^2)= (3x-x^3)/(1-3x^2). (3y-y^3)/(1-3y^2).(3z-z^3)/(1-3z^2) .

If x+y+z=xyz , show that : (3x-x^3)/(1-3x^2) + (3y-y^3)/(1-3y^2) + (3z-z^3)/(1-3z^2) = (3x-x^3)/(1-3x^2) . (3y-y^3)/(1-3y^2) . (3z-z^3)/(1-3z^2)

If x+y+z=xyz then prove that (3x-x^3)/(1-3x^2)+(3y-y^3)/(1-3y^2)+(3z-z^3)/(1-3z^2)=(3x-x^3)/(1-3x^2).(3y-y^3)/(1-3y^2).(3z-z^3)/(1-3z^2)

If x+y+z=xyz , prove that (3x-x^3)/(1-3x^2)+(3y-y^3)/(1-3y^2)+(3z-z^3)/(1-3z^2) = (3x-x^3)/(1-3x^2) cdot(3y-y^3)/(1-3y^2)cdot(3z-z^3)/(1-3z^2)

If 2x+3y+z=0 , then (8x^(3)+27y^(3)+z^(3))-:xyz is equal to