Home
Class 12
MATHS
A is a square matrix satisfying the equa...

A is a square matrix satisfying the equation `A^(2)-4A-5I=O`. Then `A^(-1)=`

Promotional Banner

Similar Questions

Explore conceptually related problems

If A is a square matrix satisfying the equation A^(2)-4A-5I=0 , then A^(-1)=

If matrix A satisfies the equation A^2+5A+6I=0 then A^3 is

If A is a square matrix satisfying the condition A^(2) =I , then what is the inverse of A ?

If A is a non-singular square matrix such that A^(2)-7A+5I=0, then A^(-1)

If A is square matrix such that |A| ne 0 and A^2-A+2I=O " then " A^(-1) =?

Let A be a square matrix of order 3 satisfies the relation A^(3)-6A^(2)+7A-8I=O and B=A-2I . Also, det. A=8 , then

Let A be a square matrix of order 3 satisfies the relation A^(3)-6A^(2)+7A-8I=O and B=A-2I . Also, det. A=8 , then

Let A be a square matrix of order 3 satisfies the relation A^(3)-6A^(2)+7A-8I=O and B=A-2I . Also, det. A=8 , then

Let A be a square matrix of order 3 satisfies the relation A^(3)-6A^(2)+7A-8I=O and B=A-2I . Also, det. A=8 , then