Home
Class 11
MATHS
What is c(n,1)+c(n,2)+c(n,4)+c(n,8)+c(n,...

What is `c(n,1)+c(n,2)+c(n,4)+c(n,8)+c(n,16)+....`up to maximum of `2^logn?`

Promotional Banner

Similar Questions

Explore conceptually related problems

If C(n,8)=C(n,2) then C(n,2)=

If C(n,8)= C(n, 6) , find C(n, 2)

What is ""^(n)C_(1)+ ""^(n)C_(2)+……… + ""^(n)C_(n) ?

""^(2n)C_(n+1)+2. ""^(2n)C_(n) + ""^(2n) C_(n-1) =

C_0 + (C_1)/(2) (4) + (C_2)/(3) (16) + …………..+(C_n)/(n + 1) (2^(2n))

If .^(n)C_(8) = .^(n)C_(2) , find .^(n)C_(2) .

If .^(n)C_(8) = .^(n)C_(2) , find .^(n)C_(2) .

C (n, 0) -C (n, 2) + C (n, 4) -...... = 2 ^ ((n) / (2)) cos (n (pi) / (4))

If n C_(1)+2. n C_(2)+..n. n C_(n) = 2 n^(2) , then n =

Prove that .^(n)C_(1) + 2 .^(n)C_(2) + 3 .^(n)C_(3) + "…." + n . ^(n)C_(n) = n 2^(n-1) .